hi

SRG Balestra

ORCID iD icon

Ramón y Cajal fellow in Physics and Materials Science at the Universidad de Sevilla, Seville (Spain), in the Theoretical Physics Division of Dept. of Atomic, Molecular and Nuclear Physics.
Mail: srodriguez9 (at) us (dot) es

About me

In March 2018, I completed my PhD in Materials Science at UPO, Seville, Spain. The research was funded by a FPI fellowship, and was supervised by S. Calero (UPO, Seville) and D. Dubbeldam (UvA, Amsterdam). The following month, I began a PostDoc at the Charles Gerhardt Montpellier Institute (ICGM-CNRS) at Montpellier, France, where I focus on synthesising and designing new MOFs, as well as studying crystal growth and nucleation processes. In September 2020, I started another PostDoc (Juan de la Cierva fellowship) as a Research Fellow at the Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), working on designing and characterising new zeolites. In 2022, I returned to Seville and started another Postdoctoral position as a Research Fellow (Junta de Andalucía) at UPO. There, my work involves using machine learning techniques to study the assembling/disassembling problem of nucleation in nanoporous materials.

Publications

Preprints

  1. Nothing

Peer-reviewed publications

2024

  1. YA. Ran, S. Sharma, SRG. Balestra, Z. Li, S. Calero, TJH. Vlugt, RQ. Snurr, and D. Dubbeldam, RASPA3: A Monte Carlo code for computing adsorption and diffusion in nanoporous materials and thermodynamics properties of fluids, J. Chem. Phys. 161, 114106, Sep. (2024)
    Special Collection: Monte Carlo methods, 70 years after Metropolis et al. (1953).
    DOI
  2. A. Franco, SRG. Balestra, S. Hamad, C. Carrillo-Carrión, Full Potential of Microwave-Assisted Processes: From Synthesis of High-Quality MIL-101(Fe) Catalyst to Furfural Valorization, Applied Material Today, 39 (2024) 102266, (Preprint in First Look Materials Today, Jan 2024)
    DOI
  3. ZR. Gao, C. Márquez-Álvarez, SRG. Balestra, H. Yu, LA. Villaescusa, MA. Camblor, Fluoride Retention During Low Temperature Organic Removal from Imidazolium-Containing Zeolites by Ozone Treatment, Inorg. Chem., May 2024, 63, 21, 9953–9966 (Preprint in ChemRxiv, Jan. 2024)
    DOI
  4. ZR. Gao, H. Yu, F.-J. Chen, X. Li, A. Mayoral, Z. Niu, Z. Niu, H. Deng, C. Márquez-Álvarez, H. He, H. Xu, W. Fan, SRG. Balestra, J. Li, P. Wu, J. Yu, MA. Camblor, Interchain Expanded Extra-Large Pore Zeolites, Nature, 628, 99–103, 2024, (Preprint in ChemRxiv, Mar. 2023)
    DOI
    * Highlighted article in UPO.es
  5. SRG. Balestra, N. Rodríguez-Sánchez, D.Mena-Torres, AR. Ruiz-Salvador, Structural Features and Zeolite Stability: A Linearized Equation Approach, Cryst. Growth Des., 24, 3, 938–946, Feb., 2024
    DOI salrodgom - zeolite-analyser
    * Highlighted article in Novaciencia.es

2023

  1. M. Barsukova, A. Sapianik, V. Guillerm, A. Shkurenko, AC. Shaikh, P. Parvatkar, P. Bhatt, M. Bonneau, A. Alhaji, O. Shekhah, SRG. Balestra, R. Semino, G. Maurin, M. Eddaoudi, Face-directed assembly of tailored isoreticular MOFs using centring structure-directing agents, Nat. Synth., 3 (1), 33–46, 2024 (online: Oct. 2023)
    DOI

    * Highlighted article in Phys.org
    Inside cover: Nat. Synth., 3 (1), 33–46, Jan. 2024

    plot!

  2. JL. Núñez-Rico, J. Cabezas-Giménez, V. Lillo, SRG. Balestra, JR. Galan-Mascaros, S. Calero, A. Vidal-Ferran, TAMOF-1 as a versatile and predictable chiral stationary phase for the resolution of racemic mixtures, ACS Appl. Mater. Interfaces, Ago. 2023, 15, 33, 39594–39605
    DOI salrodgom - CEGA
  3. E. Marugan, EP. Rebitski, M. Darder, SRG. Balestra, G. del Real, P. Aranda, Allantoin-zinc layered simple hydroxide biohybrid as antimicrobial active phase in cellulosic bionanocomposites as potential wound dressings, Appl. Clay Sci., 241, Sep. 2023, 107002
    DOI
  4. S. Sharma, SRG. Balestra, R. Baur, U. Agarwal, E. Zuidema, MS. Rigutto, S. Calero, TJH. Vlugt, D. Dubbeldam, RUPTURA: Simulation Code for Breakthrough, Ideal Adsorption Solution Theory Computations, and Fitting of Isotherm Models, Mol. Simul., 12, May. 2023, 893-953
    DOI iRASPA - RUPTURA
  5. S Sharma, MS Rigutto, R Baur, U Agarwal, E Zuidema, SRG Balestra, S Calero, D Dubbeldam, and TJH Vlugt, Modelling of Adsorbate-Size Dependent Explicit Isotherms Using a Segregated Approach to Account for Surface Heterogeneities, Mol. Phys., Mar. 2023, e2183721
    DOI
  6. SRG. Balestra (*), B. Martínez-Haya, N. Cruz-Hernández, DW. Lewis, SM. Woodley, R. Semino, G. Maurin, AR. Ruiz-Salvador, and S. Hamad, Nucleation of Zeolitic Imidazolate Frameworks: from molecules to nanoparticles, Nanoscale, Jan. 2023 (Preprint in ChemRxiv, Oct. 2022).
    DOI

2022

  1. SRG. Balestra, and R. Semino, Computer Simulation of the Early Stages of Self-Assembly and Thermal Decomposition of ZIF-8, J. Chem. Phys., 157 (18), 184502, Nov. 2022 (Preprint in Arxiv, Jun., 2022).
    DOI salrodgom - ZIFWTMetaDnbZIFFF
  2. JM. Ortiz Roldán (†), SRG. Balestra (†), R. Bueno-Pérez, S. Calero, E. García-Pérez, R. Catlow, AR. Ruiz-Salvador, and S. Hamad, Understanding the stability and structural properties of Ordered Nanoporous Metals towards their rational synthesis, Proc. R. Soc. A, 478 (2266), Oct. 2022.
    DOI
    Inside cover: Proc. R. Soc. A Oct. 2022, 478 (2266)

    plot!

  3. C. González-Galán, M. de Fez-Febré, S. Giancola, J. González-Cobos, A. Vidal-Ferran, JR. Galán-Mascarós, SRG. Balestra (*), and S. Calero, Separation of Volatile Organic Compounds in TAMOF‑1, ACS Appl. Mater. Interfaces, June 2022, 14, 27, 30772–30785
    DOI salrodgom - GAIAST
  4. JA. Seijas-Bellido, B. Samanta, K. Valadez-Villalobos, JJ. Gallardo, J. Navas, SRG. Balestra, RM. Madero-Castro, JM. Vicent-Luna, S. Tao, MC. Toroker, JA. Anta, Transferable classical force field for pure and mixed metal halide perovskites parameterized from first principles, J. Chem. Inf. Model., May 2022, 62, 24, 6423–6435 (Preprint, November, 2021)
    DOI PerovskiteMAFAPbBrI3
  5. ZR. Gao, SRG. Balestra, L. Gómez-Hortigüela, J. Li, C. Márquez-Álvarez, and MA. Camblor, A Dication Containing Three Aromatic Rings Structure Directs Towards a Chiral Zeolite, Spans Three Cavities and Effectively Traps Water, Chem. Matter., 2022, 34, 7, 3197–3205
    DOI

2021

  1. ZR. Gao, SRG. Balestra, J. Li, and MA. Camblor, Synthesis of Extra-Large Pore, Large Pore and Medium Pore Zeolites Using a Small Imidazolium Cation as the Organic Structure-Directing Agent, Chem. Eur. J., November, 2021 27, 72, 18109-18117
    DOI
  2. ZR. Gao, SRG. Balestra, J. Li, and MA. Camblor, HPM-16, a New Stable Interrupted Zeolite with a Multidimensional Mixed Medium-Large Pore System Containing Supercages, Angew. Chem. Int. Ed., July 2021 60, 37, 2021, 20249-20252
    DOI
  3. C. González-Galán, SRG. Balestra (*), A. Luna-Triguero, R. Madero, AP. Zaderenko, and S. Calero, Effect of Diol Isomers/Water Mixtures on the Stability of Zn-MOF-74, Dalton Trans., 2021, 50, 1808
    DOI

2020

  1. SRG. Balestra (†), JM. Vicent-Luna (†), S. Calero, S. Tao, JA. Anta, Efficient Modelling of Ion Structure and Dynamics in Inorganic Metal Halide Perovskites, J. Mater. Chem. A, 2020, 8, 11824-11836
    () These two authors contributed equally to this work
    DOI salrodgom - FLAMA
  2. JE. Perez-Carbajo, SRG. Balestra, S. Calero, PJ. Merkling, Effect of lattice shrinking on the migration of water within zeolite LTA, Micropor. Mesopor. Mat., 2020, 293, 109808
    DOI

2019

  1. N. Lopez-Salas, JM. Vicent-Luna, S. Imberti, E. Posada, MJ. Roldán, J. Anta, SRG. Balestra, RM. Madero-Castro, S. Calero, RJJ. Rioboó, MCC. Gutiérrez, ML. Ferrer, and F. del Monte, Looking at the “Water-in-Deep-Eutectic-Solvent” System: A dilution Range for High Performance Eutectics, ACS Sustainable Chem. Eng., 2019, 7, 21, 17565–17573
    DOI
  2. MN. Corella-Ochoa, JB. Tapia, HN. Rubin, V. Lillo, J. González-Cobos, JL. Núñez-Rico, SRG. Balestra, N. Almora-Barrios, M. Lledós, A. Güell-Bara, J. Cabezas-Giménez, EC. Escudero-Adán, A. Vidal-Ferran, S. Calero, M. Reynolds, C. Martí-Gastaldo, JR. Galán-Mascarós, Homochiral metal-organic frameworks for enantioselective separations in liquid chromatography,* J. Am. Chem. Soc., August 20, 2019, 141, 36, pp. 14306-14316
    DOI
    * Highlighted paper in Chemical & Engineering News

2018

  1. RT. Rigo(†), SRG. Balestra (†), S. Hamad, R. Bueno-Pérez, ÁR. Ruíz-Salvador, S. Calero, MA. Camblor, The Si-Ge substitutional series in the chiral STW Zeolite Structure Type, J. Mater. Chem. A, 2018, 6, 15110-15122
    DOI Ising Cation 3D Nanoporous
    ) These two authors contributed equally to this work
  2. plot!

  3. JE. Perez-Carbajo, I. Matito-Martos, SRG. Balestra, M. Tsampas, MCM. van de Sanden, JA. Delgado, VI. Águeda, PJ. Merkling, and S. Calero, Zeolites for CO2-CO-O2 separation to obtain CO2-neutral fuels, ACS Appl. Mater. Interfaces, 2018, 10 (24), pp. 20512–20520
    DOI
  4. J. Gi Min, A. Luna-Triguero, Y. Byun, SRG. Balestra, JM. Vicent-Luna, S. Calero, S. Bong Hong, and MA. Camblor, Stepped Propane Adsorption in Pure-Silica ITW Zeolite, Langmuir, 2018, 34 (16), pp. 4774–4779
    DOI
  5. R. Bueno-Perez, SRG. Balestra, MA. Camblor, J. Gi Min, S. Bong Hong, PJ. Merkling and S. Calero, Influence of Flexibility on the Separation of Chiral Isomers in the STW-Type Zeolite, Chem. Eur. J., 2018, 24 (16), pp. 4121-4132
    DOI
  6. Salvador Rodríguez Gómez, Atomistic insights into flexibility of nanoporous crystals, PhD. Thesis, (supervisors: Prof. Dr. Sofía Calero Díaz and Dr. David Dubbeldam) University Pablo de Olavide, Seville, Andalusia, Spain, 2018, 23/03
    TESEO
  7. plot!

2017

  1. J. Sánchez-Laínez, A. Veiga, B. Zornoza-Encabo, SRG. Balestra, S. Hamad, AR. Ruiz-Salvador, S. Calero, CT. Ariso and J. Coronas, Tuning the Separation Properties of Zeolitic Imidazolate Framework Core-Shell Structures via Post-Synthetic Modification, J. Mater. Chem. A, 2017, 5, 25601-25608
    DOI

2016

  1. SRG Balestra, R. Bueno-Pérez, S. Hamad, D. Dubbeldam, AR. Ruiz-Salvador, S. Calero, Controlling Thermal Expansion: a Metal Organic Frameworks Route, Chem. Mater., October 25, 2016
    DOI
  2. A. Sławek, JM. Vicent-Luna, B. Marszałek, SRG. Balestra, W. Makowski, and S. Calero, Adsorption of n-Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations, J. Phys. Chem. C, September 19, 2016
    DOI
  3. P. Gómez-Álvarez, JE. Perez-Carbajo, SRG. Balestra, S. Calero, Impact of the Nature of Exchangeable Cations on LTA-Type Zeolite Hydration, J. Phys. Chem. C, September 19, 2016
    DOI
  4. JJ. Gutiérrez-Sevillano, S. Calero, S. Hamad, R. Grau-Crespo, F. Rey, S. Valencia, M. Palomino, SRG. Balestra, AR. Ruiz-Salvador, Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion, Chem. Eur. J., 22(29), June, 2016
    DOI

2015

plot! Figure from [1]: Zeolite window distortions of zeolite RHO in presence of water molecules and extra-framework cations.

plot!

  1. SRG. Balestra, S. Hamad, AR. Ruíz-Salvador, V. Domínguez-García, PJ. Merkling, D. Dubbeldam, S. Calero, Understanding nanopore window distortions in the reversible molecular valve zeolite RHO, Chemistry of Materials, 2015, 27 (16), 5657-5667
    DOI White Rabbit
  2. S. Hamad, SRG. Balestra, R. Bueno-Pérez, S. Calero, AR. Ruíz-Salvador, Atomic charges for modeling metal-organic frameworks: Why and How, J. Solid State Chem., 2015, 223, 144-151
    DOI
  3. A. Torres‐Knoop, SRG. Balestra, R. Krishna, S. Calero, D. Dubbeldam, Entropic Separations of Mixtures of Aromatics by Selective Face-to-Face Molecular Stacking in One-Dimensional Channels of Metal–Organic Frameworks and Zeolites, ChemPhysChem, 2015, 16 (3), 532-535
    DOI

2013

  1. SRG. Balestra, JJ. Gutierrez-Sevillano, PJ. Merkling, D. Dubbeldam, S. Calero, Simulation study of structural changes in zeolite RHO, J. Phys. Chem. C, 2013, 117 (22), 11592-11599
    DOI
  2. JC. García-Vázquez, S. Rodríguez-Gómez, F. Sancho-Caparrini, Biham-Middleton-Levine Traffic Model in Two-Dimensional Hexagonal Lattice, Proceedings of the European Conference on Complex Systems 2012, 2013, 943-948
    DOI

done!

Advisor in projects and thesis

  1. Francisca Aguilar Lineros, (supervisors: Salvador Rodríguez Gómez), Enrejados zeolíticos de Imidazol (ZIF) con ligandos mixtos para el estudio de la expansión térmica en materiales porosos, Master Project, Máster Oficial en Simulación Molecular (M. Sc.), Universidad Internacional de Andalucía, 2019
  2. José Manuel González Montiel, (supervisors: Salvador Rodríguez Gómez and Sofía Calero), Effect of Structural Flexibility on the Adsorption and Diffusion of CH4 and CO2 in ITQ-29 and ITQ-50 zeolites, Final Degree Project in Environmental Science (Bc. Sc.), Pablo de Olavide University, 2015 06/30

Software

Gnu plots Figure: Left: Pure component isotherms of C1 (2-3-dimethylbutane) and C2 (3-methylpentane) in IRMOF-1 and Right: Binary mixture isotherms for booth components.

  1. Ruptura:This software is a simulation package to compute breakthrough curves and IAST mixture predictions. It has been developed at the Delft University of Technology (Delft, The Netherlands), during 2022 in active collaboration with the University of Amsterdam (Amsterdam, The Netherlands), Eindhoven University of Technology (Eindhoven, Netherlands), Pablo de Olavide University (Seville, Spain), and Shell Global Solutions International B.V. Amsterdam.
  2. FLAMA: This code adjusts interatomic potentials from a reference database of atomic structures and their corresponding DFT energies. For the calculation of energies from atomic positions, it uses the GULP or LAMMPS program via an interface. The adjustment of the potentials is done by means of a genetic algorithm. The code has been tested for the calculation of interatomic potentials of perovskites PbCs(Br,I,Cl)3 and Pb(MA,FA,Cs)(Br,I)3. The calculation of the reference database of energies and geometries was calculated using the VASP code.
    DOI
  3. Genetic Algorithm IAST: we use Ideal Adsorbed Solution Theory (IAST) to predict the loading of the gas mixture on the bundle, based only on the knowledge of the pure adsorption isotherms of the individual components.
    DOI
  4. MC/EM/MD method for flexible zeolites with cations: Methodology used for the realistic structural modeling of zeolites in which large structural deformations occur.
  5. White Rabbit: To quantify the degree of distortions of zeolite windows, we used this code.
    DOI