SRG Balestra

ORCID iD icon

Research Fellow in Physics and Materials Science at Pablo de Olavide University, Seville (Spain), in the Department of Physical, Chemical and Natural Systems. Mail: salrodgom (at) upo (dot) es

Funded by:

logotipo ERC logotipo JdA-AAC logotipo MICIN-AEI Logotipo MINECO-AEI

About me

In March 2018 I finished my PhD in Materials Science at UPO Seville, Spain. I worked under the supervision of S. Calero (UPO, Seville) and D. Dubbeldam (UvA, Amsterdam). In April 2018, I started a PostDoc at the Charles Gerhardt Montpellier Institute/CNRS in Montpellier, France, to work on the synthesis and design of new MOFs, as well as on crystal growth and nucleation processes. In September 2020, I started another PostDoc as Research Fellow at the Instituto de Ciencia de Materiales de Madrid - CSIC to work on the characterisation of new zeolites and DFT calculations. From 2022, I returned to Seville to the UPO to start another PostDoc position as a Research Fellow.



  1. S Sharma, MS Rigutto, R Baur, U Agarwal, E Zuidema, SRG Balestra, S Calero, D Dubbeldam, and TJH Vlugt, Modelling of Adsorbate-Size Dependent Explicit Isotherms Using a Segregated Approach to Account for Surface Heterogeneities, Molecular Physics, Feb. 2023
  2. SRG. Balestra (*), B. Martínez-Haya, N. Cruz-Hernández, DW. Lewis, SM. Woodley, R. Semino, G. Maurin, AR. Ruiz-Salvador, and S. Hamad, Nucleation of Zeolitic Imidazolate Frameworks: from molecules to nanoparticles, Nanoscale, Jan. 2023 (Preprint in ChemRxiv, Oct. 2022).


  1. SRG. Balestra, and R. Semino, Computer Simulation of the Early Stages of Self-Assembly and Thermal Decomposition of ZIF-8, J. Chem. Phys., 157 (18), 184502, Nov. 2022 (Preprint in Arxiv, Jun., 2022).
    DOI salrodgom - ZIFWTMetaDnbZIFFF
  2. JM. Ortiz Roldán (†), SRG. Balestra (†), R. Bueno-Pérez, S. Calero, E. García-Pérez, R. Catlow, AR. Ruiz-Salvador, and S. Hamad, Understanding the stability and structural properties of Ordered Nanoporous Metals towards their rational synthesis, Proc. R. Soc. A, 478 (2266), Oct. 2022.
    Inside cover: Proc. R. Soc. A Oct. 2022, 478 (2266)


  3. C. González-Galán, M. de Fez-Febré, S. Giancola, J. González-Cobos, A. Vidal-Ferran, JR. Galán-Mascarós, SRG. Balestra (*), and S. Calero, Separation of Volatile Organic Compounds in TAMOF‑1, ACS Appl. Mater. Interfaces, June 2022, 14, 27, 30772–30785
    DOI salrodgom - GAIAST
  4. JA. Seijas-Bellido, B. Samanta, K. Valadez-Villalobos, JJ. Gallardo, J. Navas, SRG. Balestra, RM. Madero-Castro, JM. Vicent-Luna, S. Tao, MC. Toroker, JA. Anta, Transferable classical force field for pure and mixed metal halide perovskites parameterized from first principles, J. Chem. Inf. Model., May 2022, 62, 24, 6423–6435 (Preprint, November, 2021)
    DOI PerovskiteMAFAPbBrI3
  5. ZR. Gao, SRG. Balestra, L. Gómez-Hortigüela, J. Li, C. Márquez-Álvarez, and MA. Camblor, A Dication Containing Three Aromatic Rings Structure Directs Towards a Chiral Zeolite, Spans Three Cavities and Effectively Traps Water, Chem. Matter., 2022, 34, 7, 3197–3205


  1. ZR. Gao, SRG. Balestra, J. Li, and MA. Camblor, Synthesis of Extra-Large Pore, Large Pore and Medium Pore Zeolites Using a Small Imidazolium Cation as the Organic Structure-Directing Agent, Chem. Eur. J., November, 2021 27, 72, 18109-18117
  2. ZR. Gao, SRG. Balestra, J. Li, and MA. Camblor, HPM-16, a New Stable Interrupted Zeolite with a Multidimensional Mixed Medium-Large Pore System Containing Supercages, Angew. Chem. Int. Ed., July 2021 60, 37, 2021, 20249-20252
  3. C. González-Galán, SRG. Balestra (*), A. Luna-Triguero, R. Madero, AP. Zaderenko, and S. Calero, Effect of Diol Isomers/Water Mixtures on the Stability of Zn-MOF-74, Dalton Trans., 2021, 50, 1808


  1. SRG. Balestra (†), JM. Vicent-Luna (†), S. Calero, S. Tao, JA. Anta, Efficient Modelling of Ion Structure and Dynamics in Inorganic Metal Halide Perovskites, J. Mater. Chem. A, 2020, 8, 11824-11836
    () These two authors contributed equally to this work
    DOI salrodgom - FLAMA
  2. JE. Perez-Carbajo, SRG. Balestra, S. Calero, PJ. Merkling, Effect of lattice shrinking on the migration of water within zeolite LTA, Micropor. Mesopor. Mat., 2020, 293, 109808


  1. N. Lopez-Salas, JM. Vicent-Luna, S. Imberti, E. Posada, MJ. Roldán, J. Anta, SRG. Balestra, RM. Madero-Castro, S. Calero, RJJ. Rioboó, MCC. Gutiérrez, ML. Ferrer, and F. del Monte, Looking at the “Water-in-Deep-Eutectic-Solvent” System: A dilution Range for High Performance Eutectics, ACS Sustainable Chem. Eng., 2019, 7, 21, 17565–17573
  2. MN. Corella-Ochoa, JB. Tapia, HN. Rubin, V. Lillo, J. González-Cobos, JL. Núñez-Rico, SRG. Balestra, N. Almora-Barrios, M. Lledós, A. Güell-Bara, J. Cabezas-Giménez, EC. Escudero-Adán, A. Vidal-Ferran, S. Calero, M. Reynolds, C. Martí-Gastaldo, JR. Galán-Mascarós, Homochiral metal-organic frameworks for enantioselective separations in liquid chromatography,* J. Am. Chem. Soc., August 20, 2019, 141, 36, pp. 14306-14316
    * Highlighted paper in Chemical & Engineering News


  1. RT. Rigo(†), SRG. Balestra (†), S. Hamad, R. Bueno-Pérez, ÁR. Ruíz-Salvador, S. Calero, MA. Camblor, The Si-Ge substitutional series in the chiral STW Zeolite Structure Type, J. Mater. Chem. A, 2018, 6, 15110-15122
    DOI Ising Cation 3D Nanoporous
    ) These two authors contributed equally to this work
  2. plot!

  3. JE. Perez-Carbajo, I. Matito-Martos, SRG. Balestra, M. Tsampas, MCM. van de Sanden, JA. Delgado, VI. Águeda, PJ. Merkling, and S. Calero, Zeolites for CO2-CO-O2 separation to obtain CO2-neutral fuels, ACS Appl. Mater. Interfaces, 2018, 10 (24), pp. 20512–20520
  4. J. Gi Min, A. Luna-Triguero, Y. Byun, SRG. Balestra, JM. Vicent-Luna, S. Calero, S. Bong Hong, and MA. Camblor, Stepped Propane Adsorption in Pure-Silica ITW Zeolite, Langmuir, 2018, 34 (16), pp. 4774–4779
  5. R. Bueno-Perez, SRG. Balestra, MA. Camblor, J. Gi Min, S. Bong Hong, PJ. Merkling and S. Calero, Influence of Flexibility on the Separation of Chiral Isomers in the STW-Type Zeolite, Chem. Eur. J., 2018, 24 (16), pp. 4121-4132
  6. Salvador Rodríguez Gómez, Atomistic insights into flexibility of nanoporous crystals, PhD. Thesis, (supervisors: Prof. Dr. Sofía Calero Díaz and Dr. David Dubbeldam) University Pablo de Olavide, Seville, Andalusia, Spain, 2018, 23/03
  7. plot!


  1. J. Sánchez-Laínez, A. Veiga, B. Zornoza-Encabo, SRG. Balestra, S. Hamad, AR. Ruiz-Salvador, S. Calero, CT. Ariso and J. Coronas, Tuning the Separation Properties of Zeolitic Imidazolate Framework Core-Shell Structures via Post-Synthetic Modification, J. Mater. Chem. A, 2017, 5, 25601-25608


  1. SRG Balestra, R. Bueno-Pérez, S. Hamad, D. Dubbeldam, AR. Ruiz-Salvador, S. Calero, Controlling Thermal Expansion: a Metal Organic Frameworks Route, Chem. Mater., October 25, 2016
  2. A. Sławek, JM. Vicent-Luna, B. Marszałek, SRG. Balestra, W. Makowski, and S. Calero, Adsorption of n-Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations, J. Phys. Chem. C, September 19, 2016
  3. P. Gómez-Álvarez, JE. Perez-Carbajo, SRG. Balestra, S. Calero, Impact of the Nature of Exchangeable Cations on LTA-Type Zeolite Hydration, J. Phys. Chem. C, September 19, 2016
  4. JJ. Gutiérrez-Sevillano, S. Calero, S. Hamad, R. Grau-Crespo, F. Rey, S. Valencia, M. Palomino, SRG. Balestra, AR. Ruiz-Salvador, Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion, Chem. Eur. J., 22(29), June, 2016


plot! Figure from [1]: Zeolite window distortions of zeolite RHO in presence of water molecules and extra-framework cations.


  1. SRG. Balestra, S. Hamad, AR. Ruíz-Salvador, V. Domínguez-García, PJ. Merkling, D. Dubbeldam, S. Calero, Understanding nanopore window distortions in the reversible molecular valve zeolite RHO, Chemistry of Materials, 2015, 27 (16), 5657-5667
    DOI White Rabbit
  2. S. Hamad, SRG. Balestra, R. Bueno-Pérez, S. Calero, AR. Ruíz-Salvador, Atomic charges for modeling metal-organic frameworks: Why and How, J. Solid State Chem., 2015, 223, 144-151
  3. A. Torres‐Knoop, SRG. Balestra, R. Krishna, S. Calero, D. Dubbeldam, Entropic Separations of Mixtures of Aromatics by Selective Face-to-Face Molecular Stacking in One-Dimensional Channels of Metal–Organic Frameworks and Zeolites, ChemPhysChem, 2015, 16 (3), 532-535


  1. SRG. Balestra, JJ. Gutierrez-Sevillano, PJ. Merkling, D. Dubbeldam, S. Calero, Simulation study of structural changes in zeolite RHO, J. Phys. Chem. C, 2013, 117 (22), 11592-11599
  2. JC. García-Vázquez, S. Rodríguez-Gómez, F. Sancho-Caparrini, Biham-Middleton-Levine Traffic Model in Two-Dimensional Hexagonal Lattice, Proceedings of the European Conference on Complex Systems 2012, 2013, 943-948


Advisor in projects and thesis

  1. Francisca Aguilar Lineros, (supervisors: Salvador Rodríguez Gómez), Enrejados zeolíticos de Imidazol (ZIF) con ligandos mixtos para el estudio de la expansión térmica en materiales porosos, Master Project, Máster Oficial en Simulación Molecular (M. Sc.), Universidad Internacional de Andalucía, 2019
  2. José Manuel González Montiel, (supervisors: Salvador Rodríguez Gómez and Sofía Calero), Effect of Structural Flexibility on the Adsorption and Diffusion of CH4 and CO2 in ITQ-29 and ITQ-50 zeolites, Final Degree Project in Environmental Science (Bc. Sc.), Pablo de Olavide University, 2015 06/30


Gnu plots Figure: Left: Pure component isotherms of C1 (2-3-dimethylbutane) and C2 (3-methylpentane) in IRMOF-1 and Right: Binary mixture isotherms for booth components.

  1. Ruptura:This software is a simulation package to compute breakthrough curves and IAST mixture predictions. It has been developed at the Delft University of Technology (Delft, The Netherlands), during 2022 in active collaboration with the University of Amsterdam (Amsterdam, The Netherlands), Eindhoven University of Technology (Eindhoven, Netherlands), Pablo de Olavide University (Seville, Spain), and Shell Global Solutions International B.V. Amsterdam.
  2. FLAMA: This code adjusts interatomic potentials from a reference database of atomic structures and their corresponding DFT energies. For the calculation of energies from atomic positions, it uses the GULP or LAMMPS program via an interface. The adjustment of the potentials is done by means of a genetic algorithm. The code has been tested for the calculation of interatomic potentials of perovskites PbCs(Br,I,Cl)3 and Pb(MA,FA,Cs)(Br,I)3. The calculation of the reference database of energies and geometries was calculated using the VASP code.
  3. Genetic Algorithm IAST: we use Ideal Adsorbed Solution Theory (IAST) to predict the loading of the gas mixture on the bundle, based only on the knowledge of the pure adsorption isotherms of the individual components.
  4. MC/EM/MD method for flexible zeolites with cations: Methodology used for the realistic structural modeling of zeolites in which large structural deformations occur.
  5. White Rabbit: To quantify the degree of distortions of zeolite windows, we used this code.